32 research outputs found

    Kernel methods for detecting coherent structures in dynamical data

    Full text link
    We illustrate relationships between classical kernel-based dimensionality reduction techniques and eigendecompositions of empirical estimates of reproducing kernel Hilbert space (RKHS) operators associated with dynamical systems. In particular, we show that kernel canonical correlation analysis (CCA) can be interpreted in terms of kernel transfer operators and that it can be obtained by optimizing the variational approach for Markov processes (VAMP) score. As a result, we show that coherent sets of particle trajectories can be computed by kernel CCA. We demonstrate the efficiency of this approach with several examples, namely the well-known Bickley jet, ocean drifter data, and a molecular dynamics problem with a time-dependent potential. Finally, we propose a straightforward generalization of dynamic mode decomposition (DMD) called coherent mode decomposition (CMD). Our results provide a generic machine learning approach to the computation of coherent sets with an objective score that can be used for cross-validation and the comparison of different methods

    Simultaneous Coherent Structure Coloring facilitates interpretable clustering of scientific data by amplifying dissimilarity

    Get PDF
    The clustering of data into physically meaningful subsets often requires assumptions regarding the number, size, or shape of the subgroups. Here, we present a new method, simultaneous coherent structure coloring (sCSC), which accomplishes the task of unsupervised clustering without a priori guidance regarding the underlying structure of the data. sCSC performs a sequence of binary splittings on the dataset such that the most dissimilar data points are required to be in separate clusters. To achieve this, we obtain a set of orthogonal coordinates along which dissimilarity in the dataset is maximized from a generalized eigenvalue problem based on the pairwise dissimilarity between the data points to be clustered. This sequence of bifurcations produces a binary tree representation of the system, from which the number of clusters in the data and their interrelationships naturally emerge. To illustrate the effectiveness of the method in the absence of a priori assumptions, we apply it to three exemplary problems in fluid dynamics. Then, we illustrate its capacity for interpretability using a high-dimensional protein folding simulation dataset. While we restrict our examples to dynamical physical systems in this work, we anticipate straightforward translation to other fields where existing analysis tools require ad hoc assumptions on the data structure, lack the interpretability of the present method, or in which the underlying processes are less accessible, such as genomics and neuroscience

    Energy Landscapes for Proteins: From Single Funnels to Multifunctional Systems

    Get PDF
    This report advances the hypothesis that multifunctional systems may be associated with multifunnel potential and free energy landscapes, with particular focus on biomolecules. It compares systems that exhibit single, double, and multiple competing structures, and contrasts multifunnel landscapes associated with misfolded amyloidogenic oligomers, which presumably do not arise as an evolutionary target. In this context, intrinsically disordered proteins could be considered intrinsically multifunctional molecules, associated with multifunnel landscapes. Potential energy landscape theory enables biomolecules to be treated in a common framework together with self‐organizing and multifunctional systems based on inorganic materials, atomic and molecular clusters, crystal polymorphs, and soft matter.epsr

    Designing naphthopyran mechanophores with tunable mechanochromic behavior

    Get PDF
    Mechanochromic molecular force probes conveniently report on stress and strain in polymeric materials through straightforward visual cues. We capitalize on the versatility of the naphthopyran framework to design a series of mechanochromic mechanophores that exhibit highly tunable color and fading kinetics after mechanochemical activation. Structurally diverse naphthopyran crosslinkers are synthesized and covalently incorporated into silicone elastomers, where the mechanochemical ring–opening reactions are achieved under tension to generate the merocyanine dyes. Strategic structural modifications to the naphthopyran mechanophore scaffold produce dramatic differences in the color and thermal electrocyclization behavior of the corresponding merocyanine dyes. The color of the merocyanines varies from orange-yellow to purple upon the introduction of an electron donating pyrrolidine substituent, while the rate of thermal electrocyclization is controlled through electronic and steric factors, enabling access to derivatives that display both fast-fading and persistent coloration after mechanical activation and subsequent stress relaxation. In addition to identifying key structure–property relationships for tuning the behavior of the naphthopyran mechanophore, the modularity of the naphthopyran platform is demonstrated by leveraging blends of structurally distinct mechanophores to create materials with desirable multicolor mechanochromic and complex stimuli-responsive behavior, expanding the scope and accessibility of force-responsive materials for applications such as multimodal sensing

    Machine learning implicit solvation for molecular dynamics

    Get PDF
    Accurate modeling of the solvent environment for biological molecules is crucial for computational biology and drug design. A popular approach to achieve long simulation time scales for large system sizes is to incorporate the effect of the solvent in a mean-field fashion with implicit solvent models. However, a challenge with existing implicit solvent models is that they often lack accuracy or certain physical properties compared to explicit solvent models as the many-body effects of the neglected solvent molecules are difficult to model as a mean field. Here, we leverage machine learning (ML) and multi-scale coarse graining (CG) in order to learn implicit solvent models that can approximate the energetic and thermodynamic properties of a given explicit solvent model with arbitrary accuracy, given enough training data. Following the previous ML–CG models CGnet and CGSchnet, we introduce ISSNet, a graph neural network, to model the implicit solvent potential of mean force. ISSNet can learn from explicit solvent simulation data and be readily applied to molecular dynamics simulations. We compare the solute conformational distributions under different solvation treatments for two peptide systems. The results indicate that ISSNet models can outperform widely used generalized Born and surface area models in reproducing the thermodynamics of small protein systems with respect to explicit solvent. The success of this novel method demonstrates the potential benefit of applying machine learning methods in accurate modeling of solvent effects for in silico research and biomedical applications
    corecore